澳门新葡亰赌995577铁乐学python_Day43_协程

澳门新葡亰赌995577 1

目录

铁乐学python_Day43_协程

引子

之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。
按道理来说我们已经算是把cpu的利用率提高很多了。
但是我们知道无论是创建多进程还是创建多线程来解决问题,
都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。
随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,
即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。
这样就可以节省创建线进程所消耗的时间。

为此我们需要先回顾下并发的本质:切换+保存状态
cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),
一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长。

澳门新葡亰赌995577 1

ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态。
运行、阻塞、就緒。

1、进程在运行状态下遇到io之类等待输入而进入阻塞状态;
2、调度程序选择另一个就緒状态中的进程;
3、调度程序选择就緒的进程转到运行状态;
4、之前阻塞状态下的进程出现有效输入后切换到就緒状态,而不能马上进入运行状态。

一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,
如果多个任务都是纯计算的,这种切换反而会降低效率。

澳门新葡亰赌995577,二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

为此我们可以基于yield来验证。
yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

1、yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级。
2、send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换。

单纯的反复切换反而会降低运行效率

例:串行执行
import time

def consumer(res):
    '''任务1:接收数据,处理数据'''
    for i in res:pass


def producer():
    '''任务2:生产数据'''
    res = []
    for i in range(10000000):
        res.append(i)
    return res


start = time.time()
# 串行执行
res = producer()
consumer(res)  # 写成consumer(producer())会降低执行效率
# consumer(producer()) 测试了一下这种写法结果是1.4720840454101562
stop = time.time()
print(stop - start)  # 1.3470771312713623

例2:基于yield并发执行
import time


def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x = yield


def producer():
    '''任务2:生产数据'''
    g = consumer()
    next(g)
    # send之前至少next一次生成器激活状态,因为初始的生成器是还没有值的。
    for i in range(10000000):
        g.send(i)
        # send()的两个功能:1.传值;2.next(),赋值给x的同时执行下一个yield,来回切换。


start = time.time()
# 基于yield保存状态,实现两个任务直接来回切换,即并发的效果
# PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer()

stop = time.time()
print(stop - start)  # 1.436082124710083

对比以上两例可得知单纯的反复切换反而会降低运行效率。
因为还得花费时间记住当前执行的状态,生成器相比直接串行运行,
是用时间换取了空间!

yield无法做到遇到io阻塞就切到该线程内的其他任务去执行。

对于单线程下,我们不可避免程序中出现io操作,
但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)
控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,
这样就保证了该线程能够最大限度地处于就绪状态,
即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,
从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。
为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

  1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。
  2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换。

协程

协程介绍

协程:是单线程下的并发,又称微线程,纤程。
英文名Coroutine。
一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

需要强调的是:

  1. python的线程属于内核级别的,即由操作系统控制调度
    (如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
  2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率
    (!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换优点如下:

  1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级。
  2. 单线程内就可以实现并发的效果,最大限度地利用cpu。

缺点如下:

  1. 协程的本质是单线程下,无法利用多核。
    想要利用起多核,可以在一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程。

  2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程。

总结协程特点:

  • 只在一个单线程里实现并发。
  • 修改共享数据不需加锁。(实际上是同步的)
  • 用户程序里自己保存多个控制流的上下文栈。
  • 冻结当前程序/任务的执行状态。
  • 可以规避IO操作的时间。

补充:
协程并不是实际存在的实体,它的本质就是一个线程的多个部分。
比线程的单位更小 —— 微线程、纤程。
在一个线程中可以开启很多协程。
在执行程序的过程中,遇到IO操作就冻结当前位置的状态,
切换去执行其他任务,在执行其他任务过程中,会不断的检测上一个冻结的任务是否IO结束,
如果IO结束了,就继续从冻结的位置开始执行。

一个线程没有遇到阻塞 —— 表示它一直在使用CPU
同一进程下多个线程 —— 只能有一个线程使用CPU
协程比线程之间的切换和线程的创建销毁所花费的时间、空间开销要小的多。

现在要做到一个协程遇到IO操作自动切换到其它协程。
那么如何实现检测IO呢?yield、greenlet都无法实现,就需要用到gevent模块(select机制))

引子

本章的主题是基于单线程来实现并发,即只用一个线程(很明显可以使用的CPU只有1个)情况下实现并发,为此我们需要回顾下并发的本质:切换+保存状态。

CPU正在运行一个任务,会在两种情况下切走去执行其他任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长或有一个优先级更高的程序替代了它。

其中第二种情况并不能提升效率,只是为了让CPU能够雨露均沾,实现看起来所有任务都被‘同时’执行的效果,如果多个任务全是纯计算的,这种切换反而会降低效率。为此我们用yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

1.yield可以保存状态,yield的状态保存和操作系统的保存线程状态很像。但是yield是代码级别控制的,更轻量级
2.send可以把一个函数的结果传递到另一个函数,以实现单线程程序之间的切换

单纯的切换反而会影响效率

# 串行执行
import time
def consumer(res):
    '''
    任务1:接收数据,处理数据
    :return:
    '''
    pass

def producer():
    '''
    任务2:产生数据
    :return:
    '''
    res = []
    for i in range(100000000):
        res.append(i)
    return res
# 串行执行
start = time.time()
res = producer()
consumer(res)
stop = time.time()
print('time,',stop-start)  # time, 12.530351638793945

让我们基于yield来实现并发执行

# yield并发执行
import time
def consumer():
    '''
    任务1:接收数据,处理数据
    :return:
    '''
    while True:
        x = yield

def producer():
    '''
    任务2:产生数据
    :return:
    '''
    g = consumer()
    next(g)
    for i in range(100000000):
        g.send(i)

start = time.time()
# 基于yield保存状态,实现两个任务之间的来回切换,即并发的效果
# PS:如果把每个任务都加上打印,那么明显的看到两个任务是你一次我一次,即并发执行的
producer()
stop = time.time()
print('time:',stop-start)  # time: 10.936712741851807

第一种情况的切换,在任务一遇到IO操作时吗,切换到任务二运行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

yield并不能实现遇到IO切换

# 当yield遇到IO阻塞时
# 当yield遇到IO阻塞时

import time

def consumer():
    '''
    处理数据
    :return:
    '''
    while True:
        x = yield()

def procuder():
    '''
    产生数据
    :return:
    '''
    g = consumer()
    next(g)
    for i in range(100000000):
        g.send(i)
        time.sleep(0.01)

start_time = time.time()
procuder()
stop_time = time.time()
print(stop_time-start_time)

对于单线程下,我们不可避免程序中出现IO操作,但如果我们能在自己的程序中(即用户级别程序,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到IO阻塞时就切换到另一个任务去计算,这样就保证了该线程能够最大限度的处于就绪状态,即随时可以被CPU执行的状态,相当于我们在用户级别将自己的IO操作最大限度的隐藏了起来,从而可以迷惑操作系统,让其看到:该线程好像一直在计算,IO比较少,从而更多的将CPU执行权限分配给我们的线程。

协程的本质上就是在单线程下,由用户自己去控制一个任务遇到IO阻塞就切换另一个任务去执行,以此来提高工作效率,为了实现它,我们需要寻找一种可以同时满足以下条件的解决方案:

1.可以控制多个任务之间的切换,切换之前将任务的状态保存起来,以便重新运作时,可以基于暂停的位置继续执行
2.可以检测IO操作,在遇到IO操作的情况下才发生协程

Greenlet模块

安装 :pip3 install greenlet

greenlet不是创造协程的模块,而是在协程这个模块中用来做多个协程任务的切换的。
使用switch()方法执行切换。
单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度。
所以开协程是要用在io开销高的情况下来改善程序执行速度的。

例:效率对比
#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i

def f2():
    res=1
    for i in range(100000000):
        res*=i

start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524

greenlet只是提供了一种比generator(生成器yiled)更加便捷的切换方式,
当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

单线程里的多个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,
就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。